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Abstract 

This study aimed to model mathematics growth of students from Primary 3 
to Secondary 3 from two approaches, namely, growth in content domains, and in 
cognitive domains. The sample consisted of 866 Hong Kong students who were 
followed longitudinally from Primary 3 to Secondary 3. The data were 
originally collected by the Education Bureau of Hong Kong. Plausible values of 
achievements at Primary 3, Primary 6, and Secondary 3 in three cognitive 
domains (Knowing, Applying, and Reasoning) were obtained using 
between-item multidimensional Rasch partial credit modelling. A modified 
autoregressive cross-lagged design was used to predict later achievement in the 
cognitive domains by prior achievements in these domains. Analysis was 
repeated for growth in content domains (Number, Shape and Space, Measures, 
Data Handling, and Algebra). Analysis showed that students’ later mathematics 
achievement was strongly predicted by their previous achievement in the 
Knowing and the Number domains. 
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Introduction 

This study aimed to explore students’ longitudinal growth in mathematics 
from primary to secondary year levels. Numerous research studies have shown 
that students’ previous mathematics achievement predicts their later 
achievement (Aunio, 2010; DiPerna, 2005; Geary, 2011; Jordan, 2009; Lefevre, 
2010; Locuniak, 2008; Pagani, 2010; Passolunghi & Lanfranchi, 2012; Romano, 
2010). For instance, children’s proficiencies in numbers at kindergarten was 
reported to positively predict their later mathematical achievement in the first 
stage of primary schooling (Aunio, 2010; Geary, 2011; Jordan, 2009; Lefevre, 
2010; Locuniak, 2008; Pagani, 2010; Passolunghi & Lanfranchi, 2012; Romano, 
2010). Early number proficiency was found (Locuniak, 2008; Pagani, 2010; 
Romano, 2010) to be the strongest predictor among the other general predictors. 

Previous studies found that mathematics achievement at a later stage was 
strongly predicted by primary students’ prior achievement in the subject 
(DiPerna, 2005). Mathematics skills at school entry had the greatest predictive 
power, among the three key elements of school readiness, namely, school-entry 
academic skills, attention, and socio-emotional skills (Duncan, 2007). In 
England, a two-year longitudinal study of children’s early development showed 
that five-year-old children’s total scores of mathematics (comprising eight 
content domains: concepts of comparison, classification, one-to-one 
correspondence, seriation, using number-words, structured counting, ‘resultive’ 
counting and applying general knowledge of numbers in real-life situations) at 
the end of their reception year were predictive of later achievement at seven 
years (Aubrey, 2003). An extension of the research reconfirmed the results with 
similar predictive value of mathematical scores of the same group of children at 
eleven years old (Aubrey, Godfrey, & Dahl, 2006).  

Another two-year longitudinal study in Belgium showed that procedural 
counting and conceptual counting knowledge in Grade one were predictors of 
numerical facility and arithmetical achievement, respectively, in Grade three, 
and procedural counting knowledge in Grade three predicted numerical facility 
in Grade five, but the prediction of that between Grades two and four was not 
sustained (Desoete, 2009).  
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In America, a five-year longitudinal study, tracking the students from 
kindergarten to Grade five once a year, showed that students’ quantitative 
competencies uniquely predicted their mathematics learning and achievement 
growth, and the contributions were above and beyond that of domain general 
abilities (intelligence, central executive, phonological loop, visual-spatial sketch 
pad and processing speed) (Geary, 2011). 

Similar to primary school mathematics, achievement in mathematics at 
secondary levels was also predicted by students’ prior achievement in the 
subject. Indeed, previous achievement was found to be the strongest predictor 
among other predictors including, attitudes toward mathematics, outcome 
expectancy, value of studying mathematics, engagement in mathematics, 
classroom context of mathematics lessons, parents’ education level, expectation 
of parents, and parental school involvement (Hemmings, Grootenboer, & Kay 
2011; Kyttälä & Björn, 2010; Reynolds, 1991; Yates, 2000). A review by Marsh 
and Martin (2011) showed, inter alia., that prior achievement was the more 
important predictor of later achievement after controlling for self-concept. 

In comparison to studying mathematics development from the perspective 
of growth in content domains, research concerning growth in mathematics 
cognitive domains is relatively rare. Such questions as, “What is the role of 
competencies in reasoning at primary grades in developing competencies in 
reasoning later in secondary grades?” are hardly ever addressed in research.  
Development of mathematics cognitive domains from primary to secondary 
grade levels remains a mystery. Further, with only a few exceptions (e.g. 
Wilkins & Ma, 2010), these early studies used total scores as repeated measures 
in tracking mathematics growth. This situation is far from satisfactory. 
Investigation into mathematics growth from a contents perspective is 
curriculum-based and total scores carry little information for teachers on how to 
enhance their instruction. Given that mathematics curricula are different for 
different education systems, transferability of findings on mathematics growth 
in certain content areas (e.g. Algebra) across systems may be limited by the 
proximity of curriculum between the target system and the system where the 
research was originally undertaken. Research into mathematics growth in 
cognitive domains offers an alternative approach. 
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The present study focused attention on student’s growth in mathematics 
using students’ achievement in three cognitive domains, namely, knowing, 
applying and reasoning when they were at Primary 3, as predictors of their later 
achievement in these cognitive domains when they were at Primary 6, and at 
Secondary 3. In parallel, this study also investigated mathematics growth over 
six years of the same group of students using their achievements at Primary 3 in 
four content domains, namely, Number, Shape and Space, Measures, and Data 
Handling as predictors for their mathematics achievement at Primary 6 in these 
content domains and in Algebra. Achievements at Primary 3 were also used to 
predict achievements in Number, Shape and Space, Data Handling and Algebra 
at Secondary 3. In other words, this study explored growth via two paths, one 
using students’ prior achievement in cognitive domains to predict their later 
achievement in cognitive domains, and another using students’ prior 
achievement in content domains to predict their later achievement in content 
domains. It would be ideal theoretically if items could be classified in terms of a 
cognitive by content domain matrix and prediction made based on this 3 × 5 
matrix classification but in reality, there were too few items in most of the cells 
to make valid and stable estimations from a statistical perspective. This study 
confined itself to investigating growth separately within each of the two 
classifications, namely, by cognitive domains and by content domains. 

The conceptual framework for this study is underpinned by a modified 
version of the auto regression cross-lagged model (Bollen & Curran, 2004), 
which hypothesized the longitudinal relationships from Primary 3 to Secondary 
3 between students’ achievement in the Knowing, Applying, and Reasoning 
cognitive domains (Figure 1) and between their achievements in Number, Shape 
and Space, Measures, Algebra, and Data Handling (Figure 2). The core of the 
auto regression cross-lagged model is that a student’s mathematics achievement 
at a later time (e.g. time 2) is explained by the student’s mathematics 
achievement at an earlier time (time 1). This study modified the auto regression 
cross-lagged model by allowing achievement at an even later stage (e.g. time 3) 
to be explained not only by achievement at an immediate past testing occasion 
(time 2), but also by a much earlier previous achievement (time 1). Further, 
repeated measures of more than one dimension (e.g. three cognitive dimensions) 
are analysed simultaneously instead of looking into only one aspect of growth. 
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Figure 1. Conceptual model on mathematics cognitive growth at Primary 3, 
Primary 6 and Secondary 3 

 
 

Figure 2. Conceptual model on mathematics content-domain growth at  
Primary 3, Primary 6 and Secondary 3 
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Background to Mathematics Learning in Hong Kong 

Hong Kong parents and the society place strong values on the studying of 
mathematics. Mathematics is in the curriculum of kindergarten, primary, and 
secondary schools. Performance of mathematics at the Hong Kong Diploma of 
Education determines a student’s opportunity for university education. The 
government has specific guidelines on the mathematics curriculum as well as 
instruction hours at both primary and secondary levels (Curriculum 
Development Council, 2002). 

The Hong Kong mathematics curriculum is designed to developed 
mathematics self-confidence in students. Focusing on the application of 
mathematics in work and daily life, the long term goal of the mathematics 
curriculum is to prepare students for lifelong learning, and to develop in 
students positive attitudes toward mathematics learning (CDC, 2002, 9-10). 
Learning and teaching in the subject of mathematics in Hong Kong is structured 
around a curriculum framework that organises content knowledge and skills into 
strands, or content domains (Curriculum Development Council 2002, p. 10). 
The mathematics curriculum for Primary1 to 6 is organised around five content 
domains, namely, Number, Shape and Space, Measures, Data Handling and 
Algebra. These topics are taught throughout primary school years, and the 
associated concepts are revisited, and progressively broadened and deepened at 
later school years. Number, Shape and Space, Measures and Data Handling are 
taught at every year level between Primary1 and Primary 6. The exception is 
Algebra, which is taught only from Primary 4 onwards. These five domains 
were combined into three domains for mathematics curriculum at Secondary 
year levels, namely, (a) Number and Algebra, (b) Measures, Shape and Space, 
and (c) Data Handling (Curriculum Development Council Committee, 2002). 

It should be noted that the current study focused on junior Secondary 
school years (i.e., Secondary 1 to Secondary 3), and attention was paid to the 
content domains of Number, Shape and Space, Data Handling, and Algebra. At 
junior secondary school years, the content domain of measures was only given a 
small weight and only one item was identified in the Secondary 3 TSA 
assessment for the cohort in this study. Consequently, this item was not included 
in the analysis for the current study. Further, the content domain of Number was 
given heavy emphasis in the curriculum. Thirty-six out of 68 items belong to the 
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Number domain in the assessment items. Consequently, the items for Number 
and for Algebra were separated into two distinct content domains in the analysis 
for this study rather than combined as specified in the Mathematics curriculum.  
In addition, some items in the TSA assessment used in this study could be 
classified into more than one content domain. This issue was handled in the 
analysis using a Within-item Multidimensional Partial Credit Rasch model 
which permitted cross-loading of items onto more than one domain (Adams, 
Wilson, & Wang, 1997). 

Methods 

Sample 

Secondary data for this study were originally collected by the Hong Kong 
government at the Territory-wide System Assessment (TSA) from a random and 
representative sample of 866 Primary 3 students three times: in 2004, 2007 
(students now in Primary 6), and 2010 (students now in Secondary 3). The 
longitudinal data collected from each student were their responses to individual 
assessment items at the TSA in these three years. More details about the sample 
were provided in the next section. 

Territory-wide System Assessment (TSA) 

The Territory-wide System Assessment (TSA), along with Student 
Assessment (SA), is one of the two components of the Basic Competence 
Assessment designed by the Hong Kong Government as a reform initiative 
focusing on the promotion of assessment for learning literacy (Education 
Commission, 2000). Until 2013, the TSA is an assessment administered 
annually by the government for all schools in Hong Kong based on the Chinese 
Language, English Language and Mathematics curricula at Primary 3 (i.e., end 
of Key Stage 1), Primary 6 (i.e. end of Key Stage 2), and Secondary 3 (i.e., end 
of Key Stage 3). The goal is to collect system-wide assessment data on student 
performance in these three subjects in order to facilitate policy review and 
policy formulation at the system- and school-levels. Further, system- and 
school-level reports are provided to schools with detailed information at item- 
and sub-paper levels on the strengths and weaknesses of students against basic 
competencies in the three subjects with an aim to inform teaching and learning. 



 Assessment and Learning  Issue 3 

136 

The TSA is criterion-referenced and response patterns include multiple choice, 
matching, drag-and-drop, as well as constructed response. Items were scored 
either dichotomously (0/1 for wrong/right answers) or with partial credits (0/1/2 
for totally wrong/partially correct/fully correct answers) according to the 
scoring schemes (Hong Kong Examinations and Assessment Authority, 2014; 
Mok, 2010).  

Given the wide-range of curriculum topics in each subject and at each Key 
Stage to be covered by the TSA, a matrix sampling method is used. The method 
consists of random distribution to candidates of four assessment booklets, which 
are linked by a set of common anchor items for each curriculum subject. In 
other words, there were 4 × 4 × 4 = 64 combination of booklets across the three 
TSA test occasions between Primary 3 and Secondary 3 for each of 
Mathematics, Chinese Language and English Language assessments. In this 
study, 866 students were identified to have sat the TSA conducted in 2003, 2010, 
and 2013 with the same test booklets (Booklets 4, 4 and 1 respectively) in these 
three test administrations. Item-level responses at the three test occasions of 
these 866 students were used in the current study. The sample thus represented a 
truly random and representative sample of 1/64 (1.5625%) of the population. 

Ethics 

Data collection was conducted strictly abiding to ethical principles. 
Confidentiality of schools and students were maintained throughout by using 
codes known only to senior personnel of the Hong Kong Examinations and 
Assessment System. Schools and candidates were invited to give informed 
consent before the TSA that the assessment data were collected for policy 
research purposes. No background information (e.g. socio-economic status), 
other than gender and school membership, of the candidates were collected.  

Measures 

Assessment items in the study were content analysed and categorised 
according to two classification systems: (a) according to cognitive domains as 
defined by the TIMSS 2001 classification framework (Mullis, Martin, Ruddock, 
O’Sullivan, & Preuschoff, 2009); and (b) according to content domains defined 
by the curriculum guides of the Hong Kong government (Curriculum 
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Development Council, 2002). Two sets of scales were formed from items that 
made up the respective domains.  

In the TIMSS 2001 framework (Mullis, Martin, Ruddock, O’Sullivan, & 
Preuschoff, 2009), mathematics items were classified according to intellectual 
demands of students into three mathematical cognitive domains, namely, 
Knowing, Applying, and Reasoning. Knowing in mathematics refers to the 
skills of recalling, recognizing, computing, retrieving, measuring, and 
classifying/ordering; Applying refers to the skills of selecting, representing, 
modeling, implementing and solving routine mathematical problems; Reasoning 
in mathematics refers to the skills of analyzing, generalizing/specializing, 
integrating/synthesizing, justifying, and solving non-routine problems. Scales 
were formed by gathering items in the same content domain using between-item 
Multidimensional Partial Credit Rasch model (Adams, Wilson, & Wang, 1997). 
Table 1 shows example items in each of the three cognitive domains. 

Table 1. Example items in Knowing, Applying, and Reasoning cognitive domains 

Cognitive 
Domain 

Example Item 

Knowing 53 × 409 =  
Applying There were 15 chocolates in a box.  Mimi took . Fanny took . 

Who took more?  How many chocolates did she take? 

 
    Answer:      took more. 

             She took   chocolates. 
Reasoning Michael used some sticks of the same length to form the following 

figures: 

 
According to the above pattern, how many sticks should Michael 
use in the 5th figure? 

Source of items: Retrieved on 30 October 2013 from 
http://www.bca.hkeaa.edu.hk/web/Common/res/2007priPaper/P6Math/2007_TSA_6ME4.pdf 
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The number of items across the Knowing, Applying, and Reasoning 
cognitive domains are not equal, reflecting the distribution of these cognitive 
skills in the mathematics curriculum. Assessment at Primary 3 had 28 Knowing 
items, 18 Applying items, and 15 Reasoning items. Assessment at Primary 6 had 
had 36 Knowing items, 19 Applying items, and 19 Reasoning items. Assessment 
at Secondary 3 had 30 Knowing items, 20 Applying items, and 18 Reasoning 
items. Analysis found that scales formed by items in these domains had good 
psychometric properties (Table 2). The scales were internally consistent 
(Cronbach’s Alphas are between 0.780 and 0.929) and multidimensional Rating 
Scale Rasch analysis showed that the scales had good model-data fit. Item Infit 
(i.e., weighted) Mean Square (MNSQ) statistics (Wu, Adams, Wilson, & 
Haldane, 2007) were between 0.71 and 1.39, and only 18out of 203 items had 
Outfit statistics greater than 1.5. 

Table 2. Psychometric Property of the Scales (Categorized by Cognitive Domain) 

 Scale No. of 
Items 

Cronbach’s 
Alpha 

Rasch Item 
Infit 

(Range) 

Rasch Item 
Outfit 

(Range) 

No. of items 
with 

Outfit >1.5 

P3 Booklet 4 (61 Items) 

 
P3 Knowing 28 0.830 0.89-1.18 0.78-1.37 0 

P3 Applying 18 0.812 0.89-1.18 0.73-1.46 0 

P3 Reasoning 15 0.780 0.82-1.33 0.54-1.73 2 

P6 Booklet 4  (74 Items) 

 
P6 Knowing 36 0.885 0.84-1.22 0.70-1.43 0 

P6 Applying 19 0.895 0.86-1.34 0.79-1.74 2 

P6 Reasoning 19 0.886 0.73-1.36 0.61-2.68 3 

S3 Booklet 1  (68 Items) 

 
S3 Knowing 30 0.914 0.71-1.39 0.52-1.79 5 

S3 Applying 20 0.929 0.70-1.37 0.58-1.70 3 

S3 Reasoning 18 0.921 0.77-1.38 0.68-1.92 3 

In parallel, assessment items were content analysed and classified into 
mathematical content domains of Number, Shape and Space, Measures, and 
Data Handling for Primary 3; Number, Shape and Space, Measures, Data 
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Handling, and Algebra for Primary 6; and into Number, Shape and Space, Data 
Handling, and Algebra for Secondary 3. Scales were formed by gathering items 
in the same content domain. Notably, four items involved concepts and skills of 
more than one content domain and this was handled in the analysis using 
within-item Multidimensional Partial Credit Rasch model (Adams, Wilson, & 
Wang, 1997). 

The number of items across the content domains of Number, Measures, 
Shape and Space, Data Handling, and Algebra is not equal, reflecting the 
distribution of these content skills in the Hong Kong mathematics curriculum. 
Over half of the items of assessment at each year level were Number items. 
There were 17 Measures items at Primary 3, 22 at Primary 6, and 1 item at 
Secondary 3, which, however, was excluded from the study because of 
reliability issue. There were 15 Shape and Space items at Primary 3, 11 at 
Primary 6, and 23 at Secondary 3. Data Handling was not an important domain 
at all year levels, and was represented by 8, 6, 7 items at Primary 3, Primary 6 
and Secondary 3 respectively. Algebra was not in Key Stage I curriculum and so 
there was no Algebra item at Primary 3 assessment, but there were 3 and 20 
Algebra items at Primary 6 and Secondary 3 respectively (Table 2). Example 
items in the mathematics content domains are presented in Table 3.  

Table 3. Example items in content domains 

Content Domain Example Item 

Number (Item 7, P6) 

Which of the following expressions is most suitable for estimating the 
value of   ? 

A. 2 + 5 ÷ 3          B.  2 + 5 × 3 

C.   2 + 6 ÷ 3         D.  2 + 6 × 3 
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Shape and Space (Item 20, P6) 

 

Measures (Item 24, P6) 

 

Containers A and B are completely filled with water. All the water in the 

containers is then poured into two different types of beakers (see the 

diagram above). The capacity of container ___ is larger as it can hold 

___ mL more water than the other container. 

Algebra (Item 38, P6) 

Solve the equation: 

 

 

______ 
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Data Handling (Item 42, P6) 

The table below shows the number of awards given by a school to its 
students in the last school year. 

Awards Best 
Results 

Outstanding 
Service 

Best 
Conduct 

Model 
Student 

Number 70 50 40 60 

Using the above data, complete the following bar chart and fill in the 
boxes with the correct numbers. 

 

Source of items: Retrieved on 30 October 2013 from 
http://www.bca.hkeaa.edu.hk/web/Common/res/2007priPaper/P6Math/2007_TSA_6ME4.pdf 

The psychometric properties of scales formed from assembling items 
according to content domains were not as strong as psychometric properties of 
scales formed from assembling items according to their cognitive domains. This 
was most likely due to some content domain scales were rather short. Analysis 
found that most of the content domain scales had good psychometric properties 
(Table 4) but the Data Handling scales at Primary 3 (comprising 8 items) and at 
Primary 6 (comprising 6 items) had Cronbach’s Alpha 0.595and 0.531 only. The 
other scales were internally consistency (Cronbach’s Alphas between 0.615 and 
0.905). Within-item Multidimensional Partial Credit Rasch analysis showed that 
the scales had good model-data fit (Item Infit statistics were between 0.73 and 
1.33), but 9 items in the Measures scales had Outfit statistics greater than 1.5, 
especially at Primary 6. The last result indicated that data from students at the 
extreme ends of the proficiency scales might not fit the Rasch model well. 
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Table 4. Psychometric Property of the Scales (Categorized by Content Domain) 

Content Domain No. of 
Items  

Cronbach’s 
Alpha 

Rasch 
Infit 

(Range) 

Rasch 
Outfit 

(Range) 

No. of Items 
with Outfit 

outside 0.5-1.5 

P3 Booklet 4 (61 items)      

   P3 Number 32 0.813 0.81-1.28 0.64-1.60 2 

   P3 Measures 17 0.793 0.87-1.28 0.82-1.60 2 

   P3 Shape and Space 15 0.777 0.94-1.25 0.73-1.47 0 

   P3 Data Handling 8 0.595 0.88-1.25 0.47-1.49 1 

P6 Booklet 4 (74 items)      

   P6 Number 38 0.913 0.73-1.33 0.65-2.35 4 

   P6 Measures 22 0.784 0.81-1.33 0.67-2.54 7 

   P6 Shape and Space 11 0.730 0.91-1.08 0.82-1.13 0 

   P6 Data Handling 6 0.531 0.96-1.17 0.82-1.43 0 

   P6 Algebra 3 0.615 0.95-1.16 0.89-1.20 0 

S3 Booklet 1 (68 items)      

   S3 Number 36 0.905 0.79-1.25 0.71-1.46 0 

   S3Shape and Space 23 0.902 0.71-1.41 0.62-2.72 4 

   S3 Data Handling 7 0.769 0.77-1.15 0.52-2.20 1 

   S3 Algebra 20 0.868 0.69-1.70 0.51-4.80 7 

* Some items involved concepts and skills of more than one domain 

Analysis 

This study followed a two-step analysis approach. First, Multidimensional 
Partial Credit Rasch model (Adams, Wilson, & Wang, 1997; Masters, 1982) was 
used to calibrate the items and students on the same measurement scale using 
the ConQuest software (Version 2) (Wu, et al., 2007). Multidimensional, rather 
than unidimensional, Rasch model was used in order to enhance measurement 
precision and to capitalize on the relationship between students’ scores in 
different cognitive domains (Adams, Wilson, & Wang, 1997; Mok & Xu, 2013). 
This step of the analysis generated five sets of plausible values of the latent 
variables (Wu, 2005) for each variable for each student at each year level. The 
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second step of analysis used the sets of plausible values to fit path model using 
the Mplus software (version 6) (Muthén & Muthén, 1998-2010). The analysis 
was conducted for each set of plausible values and then the results across all 
sets were averaged and reported. Further, conditions had been given to the use 
of multilevel modelling methods in view of the nested data structure (students 
nested within schools). Multilevel modelling was not used in this study because 
the matrix sampling method resulted in only a few (often one and the majority 
less than five) students from each school being included in the current sample. 

Results and Discussion 

Analysis showed that the hypothesized conceptual models tested in this 
study were supported by the data. For all the models tested, the goodness of fit 
indices Comparative Fit Index (CFI) and Tucker Lewis Index (TLI) were 
greater than 0.96, and the Root Mean Square Error of Approximation (RMSEA) 
and Standardized Root Mean Square Residual (SRMR) were less than 0.05 and 
0.09 respectively. The Chi-squared values for the fitted models were both 
substantially lower than the baseline model, and the Chi-squared values were 
not statistically significant (probability greater than 0.05) (Byrne, 2012).  
Details of results on growth in mathematics from Primary 3 to Secondary 3 are 
detailed below. 

Growth in Mathematics Cognitive Domains 

In the path model of cognitive domains, scores in the domains at earlier 
year levels were used as predictors for scores in the domains at later year levels.  
Results showed that Knowing in Primary 3 predicted all cognitive domains in 
both Primary 6 and Secondary 3. The finding provides strong evidence for the 
importance of early mathematics instruction in knowing. Knowing in Primary 6 
also predicted all cognitive domains in Secondary 3. Each of Applying and 
Reasoning in Primary 3 predicted all cognitive domains in Primary 6 but not in 
Secondary 3. Applying at Primary 6 predicted Applying at Secondary 3 but 
none of the other cognitive domains at Secondary 3. Reasoning at Primary 6 did 
not predict any other cognitive domains in Secondary 3. The predictive power 
of Primary 6 Reasoning was only through its strong correlations with Knowing 
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and Applying cognitive domains (Pearson Product Moment Correlation 
Coefficients were 0.844 and 0.844 respectively). These results are presented in 
Table 5 and Figure 3. The model has excellent fit: CFI = 1.000, TLI = 1.000, 
RMSEA = 0.000, SRMR = 0.001, Chi Square = 0.074 (d.f. = 1, P = 0.785). 
(Need to check). It is interesting to speculate on whether this result may be 
related to different conceptions of ‘reasoning’ as students grow cognitively. 
Reasoning may be conceptualized (and defined) differently for items at different 
year levels. This is a matter for further investigation. 

Table 5. Path Coefficient and Standard Errors (Cognitive Domains) 

STDYX Path 
Coeff. 

S.E. Est./S.E. Prob. 

P6 Knowing     ON     
P3 Knowing 0.258 0.075 3.456 p <0.05 
P3 Applying 0.244 0.077 3.182 p <0.05 
P3 Reasoning 0.168 0.042 4.034 p <0.05 

P6 Applying     ON     
P3 Knowing 0.254 0.075 3.405 p <0.05 
P3 Applying 0.237 0.077 3.089 p <0.05 
P3 Reasoning 0.183 0.041 4.425 p <0.05 

P6 Reasoning   ON     
P3 Knowing 0.263 0.076 3.476 p <0.05 
P3 Applying 0.214 0.078 2.749 p <0.05 
P3 Reasoning 0.179 0.042 4.292 p <0.05 

S3 Knowing    ON     
P6 Knowing 0.288 0.084 3.445  p <0.05 
P6 Applying 0.182 0.097 1.888 NS 
P6 Reasoning 0.099 0.069 1.431 NS 
P3 Knowing 0.104 0.049 2.148 p <0.05 
P3 Applying 0.005 0.033 0.146 NS 
P3 Reasoning 0.065 0.039 1.677 NS 

S3 Applying    ON     
P6 Knowing 0.306 0.082 3.718 p <0.05 
P6 Applying 0.188 0.095 1.979 p <0.05 
P6 Reasoning 0.091 0.068 1.328 NS 
P3 Knowing 0.104 0.040 2.587 p <0.05 

P3 Reasoning 0.067 0.038 1.745 NS 
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S3 Reasoning   ON 
P6 Knowing 0.308 0.083 3.695 p <0.05 
P6 Applying 0.179 0.096 1.861 NS 
P6 Reasoning 0.091 0.069 1.312 NS 
P3 Knowing 0.088 0.044 1.986 p <0.05 
P3 Applying 0.006 0.021 0.305 NS 
P3 Reasoning 0.072 0.039 1.861 NS 

P6 Knowing     WITH     
P6 Applying 0.920 0.005 176.885 p <0.05 
P6 Reasoning 0.844 0.010 86.122 p <0.05 

P6 Applying     WITH     
P6 Reasoning  0.884 0.007 119.514 p <0.05 

S3 Applying    WITH     
S3 Knowing 0.897 0.007 131.941 p <0.05 

S3 Reasoning   WITH     
S3 Knowing 0.848 0.009 90.234 p <0.05 
S3 Applying   0.959 0.003 319.533 p <0.05 

Note: NS stands for “Not Significant at 5%” 

 

Figure 3. Standardized result (STDYX) of Path model in Cognitive Domain 

Note: Only paths coefficient significant at α = 0.05 are shown. CFI: 1.000, TLI: 1.000, 
RMSEA: 0.000, SRMR: 0.001, Chi Square: 0.074 (d.f. = 1, P = 0.785) 
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As presented in Table 6, the R-squared values of scores at Primary 6 in the 
Knowing, Applying, and Reasoning cognitive domains were 0.457, 0.474, and 
0.460 respectively. This means between 45.7% and 47.4% of variances of 
Primary 6scores in Knowing, Applying, and Reasoning were explained by 
students’ scores at Primary 3 in these cognitive domains. Results also showed 
that the R-squared values at Secondary 3 in the Knowing, Applying, and 
Reasoning cognitive domains were0.403, 0.406, and 0.385 respectively. This 
means between 38.5% and 40.3% of variances of Secondary 3 scores in 
Knowing, Applying, and Reasoning were explained by students’ scores at 
Primary 3 and at Primary 6 in these cognitive domains (Table 6). 

Table 6. R-Squared Values of Predicted Cognitive Domains at P6 and S3 

Achievement in Cognitive Domains R-Squared S.E. 

P6 Knowing 0.457 0.025 

P6 Applying 0.474 0.025 

P6 Reasoning 0.460 0.025 

S3 Knowing 0.403 0.026 

S3 Applying 0.406 0.026 

S3 Reasoning 0.385 0.026 

The total effects on Knowing (0.258), Applying (0.254), and on Reasoning 
(0.263) at Primary 6byscores in the Knowing domain at Primary 3 was greater 
than the effects of the other cognitive domains at Primary 3.The total effects on 
Knowing (0.244), Applying (0.237), and Reasoning (0.214) at Primary 6 by 
scores in the Applying domain at Primary 3 were slightly lower but still strong. 
The total effects on Knowing (0.250), Applying (0.255), and on Reasoning 
(0.236) at Secondary 3ofscores in the Knowing domain at Primary 3 was 
substantially greater than effects of the other cognitive domains at Primary 3.  
Similarly, the total effects on Knowing (0.288), Applying (0.306), and on 
Reasoning (0.308) at Secondary 3 of achievement in the Knowing domain at 
Primary 6 was substantially greater than effects of the other cognitive domains 
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at Primary 3 (Table 7b). These results highlighted the significant importance in 
building strong foundations at primary years on students’ proficiency in factual 
recall, undertaking mathematical computation, measurement and classification 
(i.e. Knowing) to later mathematics achievements in cognitive knowledge and 
skills. 

The total effects on Primary 6 Knowing (0.168), Applying (0.183), and 
Reasoning (0.179) of achievement at Primary 3 Reasoning was comparatively 
weaker, although statistically significant, than the total effects of the other 
Primary 3 cognitive domains (Table 7a). The total effect on Secondary 3 
Knowing (0.164), Applying (0.168), and Reasoning (0.172) of achievement at 
Primary 3 Reasoning was comparable to total effects of Primary 3 Applying and 
both were weaker than total effects of Primary 3 Knowing. Further, total effect 
on Secondary 3 Knowing (0.099), Applying (0.091), and Reasoning (0.091) of 
achievement at Primary 6 Reasoning was weak and not statistically significant 
(Table 7b). These results imply that there is no direct contribution of proficiency 
in mathematics reasoning skills at primary levels (Primary3 and 6) to their later 
mathematics achievement at secondary level (Secondary 3). This is an 
interesting finding which might mean either ‘reasoning’ is not well measured (or 
a wrong classification for what the selected items infer) and does not capture 
what ‘reasoning’ is to younger children, or that ‘reasoning’ needs to be further 
understood and developed at the younger year levels to ensure it relates to 
mathematics achievement at later year levels.  

Table 7a. Total Effect on Cognitive Domains at P6 

 Dependent Variables 

 Knowing  Applying  Reasoning  

P3 Knowing 0.258 (0.075) 0.254 (0.075) 0.263 (0.076) 
P3 Applying 0.244 (0.077) 0.237 (0.077) 0.214 (0.078) 
P3 Reasoning 0.168 (0.042) 0.183 (0.041) 0.179 (0.042) 

Notes: Standardized (STDYX) estimated parameters were reported. All estimates significant 
at α = 0.05. 
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Table 7b. Total Effect on Secondary 3 Cognitive Domains 

 Dependent Variables 

 Knowing Applying Reasoning 

P3 Knowing 0.250 (0.062) 0.255 (0.057) 0.236 (0.059) 
P3 Applying 0.141 (0.054) 0.139 (0.044) 0.144 (0.049) 
P3 Reasoning 0.164 (0.044) 0.168 (0.024) 0.172 (0.045) 
P6 Knowing 0.288 (0.084) 0.306 (0.082) 0.308 (0.083) 
P6 Applying 0.182 (0.097) 0.188 (0.095) 0.179 (0.096) 
P6 Reasoning 0.099 (0.069) 0.091 (0.068) 0.091 (0.069) 

Notes: Standardized (STDYX) estimated parameters were reported. All estimates significant 
at α = 0.05. 

Growth in Mathematics Content Domains 

In the path model of content domains, achievements in the domains at 
earlier year levels were used to predict achievements at later year levels. Results 
are presented in Table 8 and in Figure 4. The path model had good fit to the data: 
Both CFI and TLI took the value of 1.000; RMSEA was 0.000, and SRMR was 
0.002, and Chi Squared value was 2.146 (d.f. = 5, P = 0.829). Results of the 
analysis showed that achievement in the Number domain at Primary 3 was the 
strongest predictor of achievements at all content domains at Primary 6. Primary 
3 achievement in Number domain significantly predicted achievements in all 
content domains at Primary 6, but there was no significant direct effect on any 
content domain at Secondary 3. Achievement in the Shape and Space at Primary 
3significantly predicted achievement in Number, Shape and Space, and Algebra 
at Primary 6, but not at Secondary 3. Achievement in Measures at Primary 3 
significantly predicted Number, Shape and Space, and Measures at Primary 6, 
but not at Secondary 3. Achievement at Number domain at Primary 6 was the 
only significant predictor of achievements at all content domains at Secondary 3. 
Achievements of the other domain at Primary 6 affected Secondary 3 
achievements only indirectly via their correlations with the Number domain 
achievement. 
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Table 8. Path Coefficient and Standard Errors (Cognitive Domains) 

STDYX Path 
Coeff. 

S.E. Est./S.E. Prob. 

P6 Number ON     

P3 Number  0.338 0.040 8.530 p <0.05 

P3 Measures   0.183 0.046 3.965 p <0.05 

P3 Shape and Space   0.150 0.046 3.257 p <0.05 

P3 Data Handling  0.020 0.033 0.618 NS 

P6 Shape and Space  ON     

P3 Number  0.276 0.043 6.453 p <0.05 

P3 Measures   0.167 0.049 3.398 p <0.05 

P3 Shape and Space   0.144 0.049 2.935 p <0.05 

P3 Data Handling  0.024 0.035 0.676 NS 

P6 Measures  ON     

P3 Number  0.305 0.041 7.362 p <0.05 

P3 Measures   0.197 0.048 4.095 p <0.05 

P3 Shape and Space   0.118 0.048 2.456 p <0.05 

P3 Data Handling  0.016 0.035 0.468 NS 

P6 Algebra ON     

P3 Number  0.246 0.045 5.462 p <0.05 

P3 Measures   0.097 0.052 1.851 NS 

P3 Shape and Space   0.147 0.052 2.838 p <0.05 

P3 Data Handling  0.047 0.037 1.259 NS 

P6 Data Handling  ON     

P3 Number  0.192 0.048 3.979 p <0.05 

P3 Measures   0.061 0.055 1.108 NS 

P3 Shape and Space   0.092 0.055 1.659 NS 

P3 Data Handling  0.038 0.040 0.970 NS 

S3 Number ON     

P6 Number  0.391 0.064 6.071 p <0.05 

P6 Measures   0.067 0.051 1.318 NS 

P6 Shape and Space   0.086 0.044 1.982 p <0.05 

P6 Algebra  0.032 0.041 0.794 NS 

P3 Number  0.081 0.040 2.045 p <0.05 
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P3 Measures   0.043 0.045 0.955 NS 

P3 Shape and Space   0.060 0.044 1.379 NS 

P3 Data Handling  0.015 0.031 0.481 NS 

S3 Shape and Space  ON     

P6 Number  0.399 0.065 6.151 p <0.05 

P6 Measures   0.059 0.051 1.148 NS 

P6 Shape and Space   0.078 0.044 1.748 NS 

P6 Data Handling  0.007 0.011 0.660 NS 

P6 Algebra  0.025 0.042 0.606 NS 

P3 Number  0.080 0.040 1.975 p <0.05 

P3 Measures   0.041 0.045 0.928 NS 

P3 Shape and Space   0.067 0.044 1.532 NS 

P3 Data Handling  0.017 0.031 0.548 NS 

S3 Algebra  ON     

P6 Number  0.413 0.067 6.152 p <0.05 

P6 Measures   0.045 0.053 0.852 NS 

P6 Shape and Space   0.061 0.046 1.325 NS 

P6 Data Handling  -0.001 0.019 -0.031 NS 

P6 Algebra  0.022 0.043 0.498 NS 

P3 Number  0.093 0.041 2.237 p <0.05 

P3 Measures   0.019 0.046 0.403 NS 

P3 Shape and Space   0.064 0.045 1.405 NS 

P3 Data Handling  0.017 0.033 0.515 NS 

S3 Data Handling  ON     

P6 Number  0.329 0.071 4.613 p <0.05 

P6 Measures   0.051 0.056 0.914 NS 

P6 Shape and Space   0.093 0.049 1.902 NS 

P6 Data Handling  0.005 0.023 0.200 NS 

P6 Algebra  0.009 0.046 0.204 NS 

P3 Number  0.076 0.044 1.743 NS 

P3 Measures   0.028 0.049 0.582 NS 

P3 Shape and Space   0.070 0.048 1.458 NS 

P3 Data Handling  0.022 0.034 0.653 NS 
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P3 Number WITH 

P3 Shape and Space   0.689 0.018 38.730 p <0.05 

P3 Measures   0.724 0.016 44.667 p <0.05 

P3 Data Handling  0.477 0.026 18.338 p <0.05 

P3 Shape and Space  WITH     

P3 Measures   0.774 0.014 56.926 p <0.05 

P3 Data Handling  0.573 0.023 25.363 p <0.05 

P3 Measures  WITH     

P3 Data Handling  0.511 0.025 20.286 p <0.05 

P6 Measures  WITH     

P6 Shape and Space   0.662 0.019 34.832 p <0.05 

P6 Data Handling  0.320 0.030 10.520 p <0.05 

P6 Algebra  0.426 0.028 15.338 p <0.05 

P6 Shape and Space  WITH     

P6 Data Handling  0.448 0.027 16.607 p <0.05 

P6 Algebra  0.508 0.025 20.151 p <0.05 

P6 Data Handling WITH     

P6 Algebra  0.447 0.027 16.419 p <0.05 

S3 Number WITH     

S3 Algebra  0.812 0.011 71.263 p <0.05 

S3 Shape and Space   0.944 0.004 262.333 p <0.05 

S3 Data Handling  0.751 0.015 50.770 p <0.05 

S3 Algebra WITH     

S3 Shape and Space   0.811 0.011 71.140 p <0.05 

S3 Data Handling  0.656 0.019 33.804 p <0.05 

S3 Shape and Space  WITH    

S3 Data Handling  0.785 0.013 61.313 p <0.05 

P6 Number WITH     

P6 Measures   0.757 0.014 52.583 p <0.05 

P6 Shape and Space   0.689 0.018 38.708 p <0.05 

P6 Data Handling  0.325 0.030 10.704 p <0.05 

P6 Algebra  0.694 0.018 38.989 p <0.05 

Notes: Standardized (STDYX) estimated parameters are reported. NS stands for not 
significant at α = 0.05 
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Figure 4. The standardized result (STDYX) of Path model in Content Domain 

Note: Only paths coefficient significant at α = 0.05 are shown. CFI: 1.000, TLI: 1.000, 
RMSEA: 0.000, SRMR: 0.000, Chi Square: 0.136 (d.f. = 1, P = 0.713) 

As presented in Table 9, the R-squared values of mathematics achievement 
in different content domains at Primary 6were all statistically significant. The 
R-squared values for Number, Measures, Shape and Space, Data Handling, and 
Algebra at Primary 6were 0.387, 0.331, 0.300, 0.118, and 0.225 respectively. 
This means between 11.8% and 38.7% of variances in Number, Measures, 
Shape and Space, Data Handling, and Algebra at Primary 6 were explained 
either directly or indirectly by students’ achievement at Primary 3 in these 
content domains. Results also showed that the R-squared values for Number, 
Shape and Space, Data Handling, and Algebra at Secondary 3 were 0.452, 0.446, 
0.344, and 0.410 respectively. This means between 34.4% and 45.2% of 
variances in Number, Shape and Space, Data Handling, and Algebra at 
Secondary 3 were explained either directly or indirectly by students’ 
achievement at Primary 6 and Primary 3 in the content domains.  
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Table 9. R-Squared Values of Content Domains at P6 and S3 

Content Domains R-Square S.E. 

P6 Number  0.387 0.028 

P6 Measures  0.331 0.033 

P6 Shape and Space  0.300 0.030 

P6 Data Handling  0.118 0.026 

P6 Algebra  0.225 0.031 

S3 Number  0.452 0.030 

S3 Shape and Space  0.446 0.031 

S3 Data Handling  0.344 0.034 

S3 Algebra  0.410 0.032 

Presented in Table 10a are the total effects of Mathematics content 
domains at Primary 3 on the domains at Primary 6. Achievement at the Number 
domain at Primary 3 had the strongest total effect on all content domains at 
Primary 6. Primary 3 Shape and Space had significant total effect on Primary 6 
Number, Shape and Space, and Algebra. Primary 3 Measures had significant 
total effect on Primary 6 Number, Shape and Space and Measures. There was no 
effect of Primary 3 Data Handling on any of the content domains at Primary 6. 

The total effects of Mathematics content domains at Primary 3 and at 
Primary 6 on the domains at Secondary 3 are presented in Table 10b. Although 
there was no direct effect of Primary 3 achievements in Number, Shape and 
Space, and Measures on students’ achievements at Secondary 3 in Number, 
Shape and Space, Algebra, and Data Handling content domains, there was 
significant total effect, ranging from 0.117 to 0.267, possibly channeled through 
achievements in Primary 6 Number, which had total effect in the order of 0.4 on 
the content domains at Secondary 3. These findings suggest the importance of 
an orderly sequence of teaching in Number. The lack of direct effects from 
Shape, Measure, Algebra and Data Handling at Primary 6 to achievement at 
Secondary 3 needs further investigation. It might be that the nature of the 
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curriculum changes dramatically from Primary 6 to Secondary 3 and therefore 
the predictive salience of these content domains from earlier year levels 
(Primary 3 and 6) is weakened. This suggests that there may be a disjoint in the 
spiral curriculum teaching approach advocated in Hong Kong. 

Table 10a. Total Effect on Mathematics Content Domains (Primary 6) 

 Number  Shape  
and Space 

Measures Algebra  Data  
Handling 

P3 Number 0.338 0.276 0.305 0.246 0.192 
P3 Shape and Space 0.150 0.144 NS 0.147 NS 
P3 Measures 0.183 0.167 0.197 NS NS 
P3 Data Handling NS NS NS NS NS 

Notes: Standardized (STDYX) estimated parameters are reported. NS stands for not 
significant at α = 0.05. 

Table 10b. Total Effect on Mathematics Content Domains (Secondary 3) 

 Number  Shape  
and Space 

Algebra  Data 
Handling 

P3 Number 0.266 0.262 0.267 0.231 
P3 Shape and Space 0.143 0.148 0.141 0.139 
P3 Measures 0.145 0.142 0.118 0.117 
P3 Data Handling NS NS NS NS 
P6 Number 0.391 0.399 0.413 0.329 
P6 Shape and Space NS NS NS NS 
P6 Measures NS NS NS NS 
P6 Algebra NS NS NS NS 
P6 Data Handling NS NS NS NS 

Notes: Standardized (STDYX) estimated parameters are reported. NS stands for not 
significant at α = 0.05. 

Conclusion 

The purpose of this study was to model long-term mathematics growth 
over 6 years from Primary 3 to Secondary 3. The sample comprised 866 
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students whose mathematics achievements were tracked longitudinally. Two 
perspectives were used, namely, mathematics growth in cognitive domains and 
in content domains. Scales based on students’ responses to individual items at 
the Territory-wide Systems Assessment at Primary 3, Primary 6 and Secondary 
3 were formed by assessment items using Multidimensional Partial Credit 
Rasch model by classifying items according to cognitive domains of Knowing, 
Applying, and Reasoning, and in parallel according to content domains of 
Number, Shape and Space, Measures, Algebra, and Data Handling. A modified 
autoregressive cross-lagged design was used whereby students’ mathematics 
achievement in each domain at Primary 6 was predicted by their Primary 3 
achievements, and achievement at Secondary 3 was predicted by their 
achievements at both Primary 3 and Primary 6. 

Findings of this study must be interpreted in the context of the limitations 
of this study. Due to ethical principles observed by the Hong Kong government, 
no student background information including their gender, age, and class 
membership, was collected. It was therefore not possible to explain students’ 
mathematics growth in terms of these background variables. Further, given that 
matrix sampling was used in the assessment design involving four booklets at 
each testing occasion, the number of students per school sharing the same three 
booklets over the three occasions could be very small (on average between two 
and three students per school). The small sample size per school prohibited 
multilevel modeling to be used. In addition, the matrix sampling meant that it 
was not possible to combine the two categorisations (cognitive x content) of 
mathematics domains in the analysis to investigate the their interaction effect, 
making it impossible to address such important question as “What is the 
predictive power of achievement in Knowing Numbers at Primary 3 for Primary 
6 mathematics achievement?” 

Notwithstanding the limitations, there are many strengths to this study, 
including the simultaneous treatment of multiple domains which enables the 
cross-lagged relationships across three occasions to be explored. Further, 
understanding students’ mathematic learning from multiple perspectives can 
make an essential contribution to instructional designs. 
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Results found that, inter alia, achievement in Knowing at Primary 3 was 
the most powerful predictor for achievement in all mathematics cognitive 
domains at Primary 6, and at Secondary 3. Further, achievement in Number at 
Primary 3 was the most powerful predictor for achievement in all content 
domains at Primary 6. In turn, achievement in Number at Primary 6 was the 
only direct predictor for achievement in all other content domains at Secondary 
3. These findings highlighted the importance to later mathematics achievement 
of solid foundations in memory and familiarity of mathematics basic facts (e.g. 
Table of Multipliers), rules (e.g. the four fundamental operations of arithmetic), 
operations (e.g. the use of brackets in solving equations) at early year levels. 

It is also interesting to note that in comparing the path models across time 
for both cognitive domains and content domains more direct and indirect paths 
were significant for the cognitive domains analyses. All three cognitive domains 
at Primary 3 predicted the cognitive domains at Primary 6, while both Knowing 
and Applying at Primary 6 predicted the three cognitive domains at Secondary 3. 
In contrast, for the content domains, Number, Shape, Measure and Data 
Handling, only three had direct effects at Primary 6, and this was reduced to one 
(Number) from Primary 6 to Secondary 3. These findings perhaps suggest that 
there is a stronger consistency in the mathematical cognitive development of 
children across time than there is in the development of content knowledge. As 
suggested above, these findings may reflect that the cognitive load demanded of 
children as material becomes more difficult results in enhanced cognitive ability 
over time. However, conversely, the development of content knowledge over 
time may not be directly related to earlier content knowledge because of 
structural issues in syllabi continuity. This is an issue for further study, and, in 
particular with an independent measure of mathematical achievement to which 
both cognitive dimensions and content dimensions can be related. 

This study did not find critical importance in early achievement in 
reasoning skills (e.g. solving unfamiliar problems using mathematics) to later 
mathematics achievement. With the caveat that this result might very well due 
to under development of students’ mental ability at young age of Primary 3 and 
6, instructional designs should avoid over-emphasis on introducing reasoning 
skills at early primary year levels. 



評估與學習  第 3 期 

157 

References 
Adams, R. J., Wilson, M. R., & Wang, W. C. (1997). The multidimensional random 

coefficients multinomial logit model. Applied Psychological Measurement, 21, 1-23. 

Aubrey, C., Godfrey, R., & Dahl, S. (2006). Early mathematics development and later 
achievement: Further evidence. Mathematics Education Research Journal, 18(1), 27-46. 

Aubrey, C. (2003). The development of children's early numeracy through key stage 1. 
British Educational Research Journal, 29(6), 821-840. 
doi:10.1080/0141192032000137321 

Aunio, P. (2010). Predicting children's mathematical performance in grade one by early 
numeracy. Learning and Individual Differences, 20(5), 427-435. 
doi:10.1016/j.lindif.2010.06.003 

Bobis, J., & Gould, P. (1999). ‘The mathematical achievement of children in the count me in 
too program’. In J. Truran, & K. Truran (Eds.), Making the difference (pp. 84-90). 
Adelaide: Mathematics Education Research Group of Australasia. 

Bollen, K. A., & Curran, P. J. (2004). Autoregressive latent trajectory (ALT) models a 
synthesis of two traditions. Sociological Methods and Research, 32(3), 336-383. 

Byrne, B. M. (2012). Structural equation modeling with Mplus: Basic concepts, applications, 
and programming. New York: Routledge Academic. 

Curriculum Development Council. (2002). Mathematics Education Key Learning Area 
Curriculum Guide (Primary 1 – Secondary 3). Hong Kong: The Printing Department. 

Desoete, A. (2009). Classification, seriation, and counting in grades 1, 2, and 3 as two-year 
longitudinal predictors for low achieving in numerical facility and arithmetical 
achievement? Journal of Psychoeducational Assessment, 27(3), 252-264. 
doi:10.1177/0734282908330588 

DiPerna, J. C. (2005). A model of academic enablers and mathematics achievement in     
the elementary grades. Journal of School Psychology, 43(5), 379-392. 
doi:10.1016/j.jsp.2005.09.002 

Duncan, G. J. (2007). School readiness and later achievement. Developmental Psychology, 
43(6), 1428-1446. doi:10.1037/0012-1649.43.6.1428 

Education Commission. (2000). Education blueprint for the 21st century: Learning for life, 
Learning through life–Reform proposals for education system in Hong Kong. Hong 
Kong: Printing Department. 

Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year 
longitudinal study. Developmental Psychology, 47(6), 1539-1552. doi:10.1037/a0025510 



 Assessment and Learning  Issue 3 

158 

Hemmings, B., Grootenboer, P., & Kay, R. (2011). Predicting mathematics achievement: The 
influence of prior achievement and attitudes. International Journal of Science and 
Mathematics Education, 9(3), 691–705. 

Hong Kong Examinations and Assessment Authority (2014). TSA: Introduction. Retrieved 31 
Nov 2014 from http://www.bca.hkeaa.edu.hk/web/TSA/en/Introduction.html 

Jordan, N. C. (2009). Early math matters: Kindergarten Number competence and later 
mathematics outcomes. Developmental Psychology, 45(3), 850-867. 
doi:10.1037/a0014939 

Kyttälä, M., & Björn, P. M. (2010). Prior mathematics achievement , cognitive appraisals and 
anxiety as predictors of Finnish students ’ later mathematics performance and career 
orientation. Educational Psychology : An International Journal of Experimental, 30(4), 
431–448. 

LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., 
Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of 
performance. Child Development, 81(6), 1753-1767. 

Locuniak, M. N. (2008). Using kindergarten Number sense to predict calculation fluency   
in second grade. Journal of Learning Disabilities, 41(5), 451-459. 
doi:10.1177/0022219408321126 

Marsh, H.W., & Martin, A.J. (2011). Academic self-concept and academic achievement: 
Relations and causal ordering. British Journal of Educational Psychology, 81(1), 59-77. 

Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174. 

Mok, M. M. C. & Xu, K. (2013). Using Multidimensional Rasch to enhance measurement 
precision: Initial results from simulation and empirical studies. Journal of Applied 
Measurement, 14(1), 27-43. 

Mullis, I. V. S., Martin, M. O., Ruddock, G. J., O’Sullivan, C. Y., & Preuschoff, C. (2009). 
TIMSS 2011 Mathematics Framework. In TIMSS 2011 Assessment Frameworks (pp. 
19–46). TIMSS & PIRLS International Study Center Lynch School of Education, Boston 
College. 

Muthén, L. K., & Muthén, B. O. (1998-2012). Mplus statistical analysis with latent variables: 
User’s Guide. Los Angeles, CA: Muthén & Muthén. 

Pagani, L. S. (2010). School readiness and later achievement: A french canadian replication 
and extension. Developmental Psychology, 46(5), 984-994. doi:10.1037/a0018881 

 

 



評估與學習  第 3 期 

159 

Passolunghi, M. C., & Lanfranchi, S. (2012). Domain-specific and domain-general precursors 
of mathematical achievement: A longitudinal study from kindergarten to first grade. 
British Journal of Educational Psychology, 82(1), 42-63. 
doi:10.1111/j.2044-8279.2011.02039.x 

Pearn, C. (1998). ‘Is there a need for a mathematics intervention program in grades 3 and 4?’ 
In M. Goos, & E. Warren (Eds.), Teaching mathematics in new times(pp. 444-451). 
MERGA, Brisbane,: Proceedings of 21st Mathematics Education Research Group of 
Australasia. 

Reynolds, A. J. (1991). The middle schooling process: Influences on science and mathematics 
achievement from the longitudinal study of American youth. Adolescence, 26(101), 
133–158. 

Romano, E. (2010). School readiness and later achievement: Replication and extension using 
a nationwide Canadian survey. Developmental Psychology, 46(5), 995-1007. 
doi:10.1037/a0018880 

Wu, M. (2005). The role of plausible values in large-scale surveys. Studies in Educational 
Evaluation, 31, 114-128. 

Wu, M. L., Adams, R. J., Wilson, M. R., & Haldane, S. (2007). ConQuest (Version 2.0) 
[Computer Software]. Camberwell, Australia: ACER. 

Yates, S. M. (2000). Task involvement and ego orientation in mathematics achievement: A 
three year follow-up. Issues in Educational Research, 10(1), 77–91. 

Corresponding author’s email： mmcmok@ied.edu.hk 


